Physics symbols for VARIABLES and their UNITS of measure

These symbols for VARIABLES	measured in these SI UNITS	and sometimes these other units
(which are used in equations) are		of measure.
d = distance		1000 millimeters (mm) = 1 m
		100 centimeters (cm) = 1 m
Δx "delta x" = displacement	meter (m)	1 kilometer (km) = 1000 m
$\Delta h = \text{change in height}$		1 angstrom (Å) = 10^{-10} m
λ "lambda" = wavelength		1 nanometer (nm) = 10^{-9} m
A = area	square meter (m ²)	1 hectare (ha) = 10000 m^2
V = volume	cubic meter (m³)	1 liter (l or L) = $1/1000 \text{ m}^3$
v – volume	cubic meter (m.)	1000 milliliter (ml) = 1 L
t = time		1 year $(y) = 365.25 d$
$\Delta t = \text{time}$ $\Delta t = \text{time interval}$	second (s)	1 day (d) = 24 h
T = period	second (s)	1 hour (h) = 60 min
1 – period		1 minute (min) = 60 s
f[or v "nu"] = frequency	hertz (Hz)	1 Hz = 1/s
v = velocity	meter per second (m/s)	
a = acceleration	meter per second squared (m/s ²)	
m = mass	kilogram (kg)	
ρ "rho" = density	kilogram per cubic meter (kg/m³)	
p = momentum	kilogram meter per second (kg·m/s)	
F = force	newton (N)	$1 N = 1 kg \cdot m/s^2$
E = energy		$1 J = 1 N \cdot m = 1 kg \cdot m^2 / s^2$
KE = kinetic energy	joule (J)	1 calorie (cal) = 4.186 J
PE = potential energy		1 Calorie = 1000 cal =
W = work		1 kilocalorie
		1 British thermal unit (Btu) =
Q = heat		1055 J
P = power	watt (W)	1 W = 1 J/s = 1 ampere volt (AV)
MA = mechanical advantage	no units; $MA = W_{output} / W_{input}$	
T = temperature	kelvin (K)	$K - 273.2 = {}^{\circ}C$ [Celsius]
		9/5 °C + 32 = °F [Fahrenheit]
c = specific heat	joule per kilogram kelvin (J/kg·K)	$1 \text{ J/kg} \cdot ^{\circ}\text{C} = 1 \text{ J/kg} \cdot \text{K}$
q = charge of particle	coulomb (C)	
V = voltage (potential difference)	volt (V)	1 V = 1 J/C
I = current	ampere [or amp] (A)	1 A = 1 C/s
R = resistance	ohm (Ω)	
E = electric field	newton per coulomb (N/C)	1 N/C = 1 V/m
C = capacitance	farad (F)	1 F = 1 C/V
B = magnetic field	tesla (T)	$1 T = 1 N/A \cdot m = 1 N/C \cdot V$

Constants

Constants		
c = speed of light in a vacuum	$c = 3 \times 10^8$ meters per second (m/s)	
G = universal gravitational constant	$G = 6.67 \times 10^{-11}$ newton meters squared per kilogram squared (N·m ² /kg ²)	
g = acceleration due to gravity: Earth	g = 9.8 meters per second squared (m/s ²)	
k = coulomb constant	$k = 9 \times 10^9$ newton meters squared per coulomb squared (N·m ² /C ²)	

Vector quantities have two characteristics; both magnitude and direction. When handwritten, vectors are represented by drawing a line or arrow above the symbol.

 $\bar{a} = 2.3 \text{ m/s}^2 \text{ [north]}$ or \vec{F} = 23 N [down] For example:

Scalar quantities have only magnitude.

Variables and Units.doc 9/12/2010